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SDM Center Goal: T
Reducethe Data Management Overhead - —
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time l
Data
Manipulation:
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Reduce the Data M anagement Over head: How?: =5==§EM

o Efficiency

« Example: parallel I/O, indexing, matching storage structures to
the application

e Effectiveness

« Example: Access data by attributes-not files, facilitate massive
data movement

 New algorithms

« Example: Specialized PCA techniques to separate signals or to
achieve better spatial data compression

 Enabling ad-hoc exploration of data

« Example: by enabling exploratory “run and render” capability to
analyze and visualize simulation output while the code is running
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Principles =2 SDM

a Guiding principles
= Work with individual application scientists
= Work with specific scientific problems
= Deploy technology already developed or prototyped
» Do research/development driven by need and experience
= Re-apply techniques to new applications
d Focus areas
= Parallel and Grid I/O Infrastructure
« Astrophysics, Climate, Fusion
= Exploratory Analysis and Data Mining
« Astrophysics, Climate
= Distributed, Heterogeneous Data Integration
 Biology

= Efficient Processing and Access of Very Large Datasets
 High Energy Physics, Combustion, Astrophysics
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Test Environment: ORNL Probe—*“Placetobe’ i::::
Randy Burris, ORNL s SOUM

. Production

ToNERSC
Probe

Gigabit Ethernet

SciDAC Pl meeting, March 2003 6



Results

(Also see 5 posters)



Parallel and Grid I/O i SDM

a Team Members

= Bill Gropp, Rob Ross, Rajeev Thakur, Rob Latham, Neill Miller
(ANL)

= Alok Choudhary, Wei-Keng Liao, Jianwei Li, Avery Ching (NWU)
= Ghaleb Abdulla, Tina Eliassi-Rad (LLNL)

a Improving software at all 1/0 layers
= High level interfaces
= MPI-IO
= Parallel file systems

O Enabling tighter

coupling of layers
= Hints Storage Devices

Parallel NetCDF

MPI-IO (ROMIO)

Parallel File System (PVFS)

= Structured I/O requests
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/O in NetCDF i SDM

O Original NetCDF

= No possibility of collective v vy : : v
optimizations

= All processes read file independently

= Writes are carried out by shipping

data to a single process (sequential
write)

Parallel NetCDF

= Parallel read/write to shared NetCDF after
file

= Built on top of MPI-IO which utilizes
optimal 1/O facilities provided by the
parallel file systems

= Allows for MPI-10 collective |/O,

datatypes, and hints for further
optimization Parallel File System
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. LBNL Benchmark

X

i SDM
| I IR R RE]

Y

Z partition Y partition
[
y
YZ partition XZ partition

O processor O

O processor 1

O processor 2
O processor 3

sithd A LLELOR,

X 0 Test suite
/ = Developed by Chris

Ding et al. at LBNL
= Written in Fortran
= Simple block

partition patterns

O Access to a 3D array
which is stored in a
single netCDF file

O Running on IBM SP2 at
NERSC, LBNL

= Each compute node
IS an SMP with 16
processors

= |/Ois performed
using all processors

X partition

/L

XY partition

@ processor 4
@ processor 5
m processor 6
m processor 7/
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LBNL Results — 1 GB i SDM

1000

1000 ¢ . _ : ~ E
. READ: 1[3B i_|_ f WRITE: 1 GB d_|_:

Ij—l—:

g

Rates (MB/sec)

-
=

E‘__”"‘-——--______ |
1 1 1 |
1 2 4q a 16 32 1 2 4 a 16 32
Mumber of PEa Mumber of PEs

O Array size —512 x 512 x 512, real*8

O Read
= No better performance is observed

O Write

= 4-8 processor writes results in 2-3 times higher bandwidth than using
a single processor
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Our Results — 1 GB i1 : SDM

OIETETETET
Write 1 GB
1000 1000 T T T T i

H
o
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o
€ | j
S 10 3
S j :
=
©
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Bandwidth (M B/sec)
H
o

il 1k Z —— X —E8-ZX —A— -
Y —— Y X —%— Y —— Y X —%—
Ol 1 1 1 1 Ol 1 1 1 1
1 2 4 8 16 32 1 2 4 8 16 32
Number of processors Number of processors

O Array size: 512 x 512 x 512, real*8
O Run on IBM SP2 at SDSC
a /O is performed using one processor per node
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FLASH 1/0 Benchmark Comparison i SDM

IR ERR]
Parallel NetCDF vs. HDF5 Performance
—~ 9.00 1
o al
v 4.00
Q / —— HDF5 Checkpoint
£ 3.00 PNetCDF Checkpoint
% 200 —A— HDF5 Plotfile (Corners)
L —N\ -
” e —>— PNetCDF Plotfile (Corners)
S 1.00
OOO I I I I I I

8 16 24 32 40 48 56 64

Number of Compute Nodes

Ported FLASH I/O Benchmark to Parallel NetCDF
Results on IBM SP at SDSC
Preliminary numbers - further optimization planned

Parallel NetCDF provides a useful subset of HDF5 features
that are more amenable to parallel I/O

(I W Wy N
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PVFS and ROMIO 2 SDM

2 Parallel Virtual File System
= Parallel File System for Linux clusters

= SDM work extending PVFES capabilities to better
match scientific application requirements (structured
file access)

a0 ROMIO

= MPI-IO implementation used on most platforms

= SDM work

 Harnessing new capabilities in PVFS
 Enabling access to grid 1/0O resources via MPI-IO interface
 Extending hints available for performance tuning
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Automated Hint Generation i SDM

O Hints to underlying system software can boost performance by
creating new pre-fetching and caching strategies

O “Right” set of hints varies by user, application, and system

O Automated generation of hints from 1/O log files can lead to
discovery of “most desirable” set of hints

O Feedback from previous hints to I/O system can shorten the
discovery process g- >

[Pattern,
Hints]
training data

0 Utilizing and extending Userl‘\
MPI-10 hint mechanism disn
IS an ideal candidate for

_______
User n
/

Application Supervised
Logging B ‘Learner (e.g., =@nts
i T neural net, DT,

T = etc)
Unsupervised )
Learner Hints
Converter
I/O Logging

Astrophysics l
MPI-1/O
Hints
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ASPECT: Adaptable Simulation Product

E ! ! g 9 nt_LQI TQ_QI T

Application

Scientists:

Q Tony Mezzacappa,

ORNL, Astrophysics

0O David Erickson,
ORNL, Climate

0 John Drake,
ORNL, Climate

Development

ASPECT

|PrROBE

~vaB-

Plug-in modules

| Des ktop

RACHET

WFIIEI
x-"!

ICA =

@E

ailini

me-' e

 GUI Interface

Team:

o Nagiza F. Samatova
Project Lead

Q George Ostrouchov

Qa lan Watkins

Q David Bauer

Q Guru Kora

Q Hoony Park

Qa Jennifer Golek

Q Faisal AbuKhzam

a Yongming Qu

Technoloqy

Collaborators:

0 Randy Burris, ORNL

O Ross Toedte, ORNL

0 Rob Ross, ANL

a Bill Gropp, ANL

0O Rajeev Thakur, ANL

O Rob Grossman, UIC

a Alok Choudhary, NWU
a Wei-keng Liao, NWU

Q Jim Ahrens, LANL

O Gene Golub, Stanford U.
a Mike Langston, UTK

http://www.scidac.orqg/SDM/ASPECT
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Typical Simulation Exploration Scenarios N

Driven by limitations of existing technologies -

0 Post-processing Scenario:
3 Submit a long-running simulation job (weeks — months)

3 Periodically check the status (run “tail -f” command on each
machine)

[ Analyze large simulation data set

2 Real-time Scenario:
3 Instrument a simulation code to visualize a field(s)

3 While running a simulation job
 Monitor the selected field(s)

* |f can not monitor, then either Stop a job or Continue running
without monitoring and ability to view later what has been skipped

3 If changing a set of fields to monitor, then go to 1
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Improvements through — ASPECT
Data stream - not simulation - monitoring tool S e

Simulation I’..
Data

ASPECT ASPECT's advantages:
PROBE

“yp

Des ktop

* No simulation code instrumentation
 Single data — multiple views of data
* No interference w/ simulation

« Decoupled from the simulation

I\\
|
I 100 | ‘I‘l\““\ ‘

ASPECT’'s drawbacks:

* No computational steering
* No collaborative visualization

i R | = P A o
RACHET = ICA I GUI Interface

ST ST T TICSTIg TV rOr T OO0 18




“Run and Render” Simulation Cycle icii::

/

PROBE for Storage &
Analysis of Simulation Data:
» High-Dimensional (5

* Distributed
* Dynamic

» Massive

ASPECT

PROBE

S48

_ Plug-im modules

Des ktl:up

--A.A.....-ll-"v""' i Mo
N ;
- :.{._
RACHET A =

GUI Interface

N ':l 2

Supernov
Explosion

Environment

(TSI)Simulatio
Computatlonal
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Application Scientist

ASPECT Features:

v Enables effective and efficient
monitoring of data generated by long
running simulations.

v Provides the GUI interface to a
rich set of pluggable data analyses.

v'Supports scientific & statistical data
analysis visualization via pVTK.

v'Handles large data sets via data
reduction & parallel algorithms

v'Provides efficient I/O through MPI-
1O to NetCDF and HDF-.

v’ Transfers data efficiently through
UDB-based Sabul protocol.
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Adaptive Data Reduction in ASPECT

0 SciDAC TSI simulation:

= 15to 200 times reduction per
time step

» Qutperforms sub-sampling 3
times for comparable MSE
over all time steps

* Provides 30-fold compression

MSE

, ‘I.

0.000 0005 0010 0015

D
1

T
0.06
Data Compression

0 002

with 99% accuracy (captured 100 200
Val’lab”lty) Timestep

300 400

0 Based on SVD of contiguous o
field blocks ,. Original

0 Exploits spatial correlation &
adapts to complexity of

spatial field

0 Parameter controls captured
percentage of variation

2 Linear time field restoration

15x Reduced Data

Time step 390

SciDAC Pl mesting, March 2003
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This work is expanding the scientific  Hiigpy

understanding of global climate change  #mmm

O Goal: understand changes in global temperatures

O Problem: separation of different sources, such as El Nino (ENSO)
and volcano eruptions

O Results: first to identify ENSO component in zonally averaged re-
analysis climate data from NCEP

O Next steps: refine techniques and scale up algorithms to identify
more sources in other datasets

O Collaborations: vital to our success
= Dr. B.D. Santer: climate expert
= SciDAC team: latest computational methods

O Other benefits: general purpose software tools for dimension
reduction and source separation; re-usable in other domains;
synergistic to efforts at ORNL and LBNL

O Work performed by: Imola Fodor, Chandrika Kamath (LLNL)
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New Algorithm Successfully Isolates the i |
ENSO Component in Global Temperatures &

EDE j‘usn l - ' ijom im
Dimension reduction — ks =y

>

PCA F': - r s
“_— lﬁ“: il §
Raw data: 264x144x73x17 PC baSIs 73x17
/ l l \ \ # reduced
time lat lon altitude Source Separatlon\ ICA dimension

;szj\\ PO N AL ke Aﬂ *
PR N W VM”WW %w\\f

s mases 1€ feses calescdd T2 cagacsod |

— aLcs
— Ty

(=) =2 -

Estimated ENSO source component and Nino 3.4 ENSO index: 264x1

The excellent match indicates the success of our approach.
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Distributed, Heterogeneous Data
Integration THE

0 Team members
= Terence Critchlow (LLNL)
= Calton Pu, Ling Liu (Georgia Tech)

= Bertram Ludaescher, Amarnath Gupta, likay Altintas
(SDSC)

» Mladen Vouk, Donald Bitzer, Munindar Singh, David
Rosnick (NCSU)

» Matt Coleman (LLNL)

a Helping scientists perform the complex data

manipulations they need to perform their
research
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Motivating Use Case: Identifying  #iic,,

Model Sequences L
A ©°°ome
accession #
g Clusfavor
Matt Hundreds™> % Mode
of sequences® N sequence Sequence
\ \ :
\ Mode F — — — —|Blast against
: X
E”F'CSTLSEV%?EEE#SEVG“TEZ%VFE ' | builder | B
\ ¥ 7 1 Homologs
@D v Filter
Sequence | ’ | Accession #

Sequence Subseq to
Transfac 2000bp
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User View =i SDM

XML Wrapper [*

| =

> XML Wrapper [*

XMLWW R

Workflow Engine [

Abstract
W or kflow

Run the

wor kflow Use wrappersto interact

with data sources
Definethe

wor kflow
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SDM Enabling Technology: XWRAPComposer

last Detail
Wrapper

Blast Sum
Wrapper

Sequence
Wrapper

Extracting Data from
a single Web Document
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=
“Existing Wrapper = ==
Technology |

-
L]

~Nuclectide

e JHucleotide
= IHucleotide
Sope —
| ey 'y
e

resutts ot BLAST

. Madden, Alejandro h. Schaffer,
Bb Hiller, and David J. Lipman (1997),

new gemeration of protein database search
25:3389-3402 .

3.31Ac011969

2
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Architecture =
EE EN BN EE NS
/ \ GUI /Abstract Wor kflovv\
Complex Wor kflow Definition
Execution Context Mediation Domai £
An extended version omaln Speciilc
of an open source Semantic Mediation transformatlor)s USG
workflow engine semantic mediation to
execltes the Workflow Support map the abstract
. workflow into an
\vvorkflow. / Registries \@<ecutable format. /
g ITioliE Den WEEgES | ~ Automatic Wrapper A
lg Gener ation
\ The workflow engineis
Isolated from the data

ksources by wrappers. Y

i

Computational
Resources

SciDAC Pl meeting;
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Future Work i SDM

0 Semantic mediation
= Define abstract workflow language

= Compile abstract workflow to executable workflow
 Targeting XPDL (workflow engine input format)

0 Extend open source workflow engine

* |[ntegrate open source workflow engine with existing
workflow design tool

2 Wrapper generation
= Automatically define WSDL and SOAP interfaces

[ A prototypeisbeing used by Matt Coleman at LL NL }
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FastBit: Compressed BitMap Index §iiSPM

Applied to:
HENP
Combustion

John Wu, Arie Shoshani, Doron Rotem
LBNL

HENP Collaborators: Jerome Lauret, STAR-BNL
Wei-Ming Zhang, Kent State University

Combustion Collaborators: Wendy Koegler,
Jackie Chen, SNL
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FastBit Index i SDM

O Need to search over
= millions of objects (100s million events)
= Hundreds of searchable attributes

2 Most users specify range conditions on a
handful of attributes

2 Our method (FastBit) is effective with high
cardinality attributes by applying:
= Binning the attribute values
= effective compression of bitmaps
= Optimize Compression for Computation Efficiency
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Basic Bitmap Index it SOM

A Bitmap index idea: have one bitmap for each value
Q For scientific data: values are numeric and have large cardinality
Q partition into bins (e.g. 100): 0-10, 11-20, ...

Number of Pions

Energy

1| o] o] |o| lo] [o] |0 ol || o] [o] |o ol |of lo] [o] || lo] [o] |o
ol [1{ o] o] |of lo] [o ol lof 1] [o] |o ol |of lo] [o] |of 1] [o] |o
ol lof lo] o] |o| o] |1 ol [1] o] [o] |o ) ol |of lo] [o] || lo] [o] |o
otelelelelelll elelefelel  The basic feliofol ol ollofo
ol |1 1

ol o] [1] o] |o| lo] o 1| lof lo| lo] |o I I ol o] [of || lo| o] [o] |0
ol lof 1] o] |of o] [0 1{ o] [o] lo| o bltmaplndex ol |of lo] 1] |of lo] [o] |o
ol lof 1] [o] |of o] [o 1{ o] o] lo| o ol |of lo] 1] |of lo] [o] |o
ol [1{ o] o] |of lo] [0 ol lof 1] [o] |o ol |of 1] [o] |of lo] [o] |o
ol lof 1] [o] |of o] [0 1{ o] [o] lo| o ol |of lo] 1] |of lo] [o] |o
ol lof 1] o] |of o] [0 1{ o] [o] lo| o ol |of lo] [1] |of lo] [o] |o
ol lof 1] o] |of o] [0 1{ o] [o] lo| o ol |of lo] [1] |of lo] [o] |o
ol lof lo] o] |of[1] [0 ol |of lo] [1] |o ol |of lo] [o] |of lo] [2] |o
ol lof 1] o] |of o] [0 1{ o] [o] lo| o ol |of lo] 1] |of lo] [o] |o
ol lof 1] [o] |of lo] [0 1{ o] o] |o| o ol |of lo] 1] |of lo] [o] |o

* Only asingle“1” in each row
« WAH: Optimize Compression for Computation Efficiency
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Performance of Partial Range Queries EEEEEEEEM
2.2 million records of STAR data THEE

query processing time (sec)
query processing time (sec)

-8 WAH
-2~ BBC -2~ BBC
-e+- ORACLE | -e+- ORACLE |
0 1 1-:?uery box s.ge 0 0 N 1-:1 1:1]"‘%?? box sge ° °
2 attributes per query 5 attributes per query

0 WAH compressed indexes are
= >]10X faster than ORACLE,
= >5X faster than our implementation of BBC (BBC is also used in ORACLE)

0 12 most queried attributes are used, average attribute cardinality 222,000
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Using Bitmap Indexing in
the STAR Anal_ysis Framework

2 Generate large amounts of raw data
= Collect from experiments or large simulations
= STAR: ~ 100 Million collision events a year
= STAR: Each event ~1-5 MB

0 Post-processing of data
= process data (find particles produced, tracks)

= generate summary data
e e.g. momentum, no. of pions, transverse energy
« Number of properties is large (50-100 attributes)

0 Analyze data

" use summary attributes to select relevant events

= extract subsets from the large dataset

 Need to access events based on partial

properties specification (range queries)
 e.0.((0.1 <Energy <0.2) " (10 <Np <20)) v (N >6000)

= Current practice: generate pre-selected subsets (called micro-DST)
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Architecture for Dynamic Analysis

EEEEEEE
Framework i
Client Server
Logical Request Qu_ery FastBit File
- GlEe | ndex Catalog
Get re$ v —
Physics | Event N | File DRM
Analysis Iterator u scheduler
DRM - Disk Resource Manager
HRM — Hierarchical Resource Manager DISk
Cache
server server server server
GridFTP GridFTP DRM FTP GridFTP
N /
/ e
— 7 7

Cache
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Discovering Combustion Flame Fronts ey, 4
using Bitmap Indexing Technology &

a Characteristics of feature tracking in combustion

data analyses

= High-fidelity simulation on 2D or 3D uniform grids, say, 1000 x
1000 x 1000, for hundreds of time steps

= A model of hydrogen-air mixture has a dozen attributes per
grid point, a realistic model has many more

= Features are defined to be regions that satisfy the user
specified conditions, such as,
“600 < Temperature < 700 AND HO, concentration > 10-"

0 Goal:

= Interactive feature tracking
= Multiple attribute conditions for specifying regions

a We use FastBit for:
= Cell identification
= Region growing
= Region tracking
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Tracking Features Over Time Steps it SDM

e Features are
outlined with
thin black lines

* Red color
indicates a high t
concentrate of 3
a transient
chemical HO,
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Performance- Feature Tracking i SDM

Average time (seconds) to perform steps of feature tracking

Feature tracking in : : : :
interactive time - the 600 x 600 grid, 69 time steps 1344 x 1344 grid, 335 time steps

time is less than ten (795 MBs) (19.3 GBs)
seconds in most cases #atr Search Grow Track #attr Search Grow Track

Feature identification 1 106 022 002 1 571 205 012
(searching and region

growing) in one time

step on 10002 grid may 2 167 017 0.01 2 739 124 012
be completed in less
than ten seconds 3 212 014 0.01 3 892 0.58 0.11

Times are for all time

steps 4 262 014 0.01 4 1030 047 010
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Adaptive File Caching and Replication

in Distributed Systems Eiiiii oM

a Goals

= Develop a coordinated optimal file caching and
replication of distributed datasets

a Two Principal Components of Policy Advisory
Module

» A disk cache replacement policy

 Evaluates which files are to be replaced when
space is needed

= Admission policy for file requests
 Determines which request is to be processed next

e e.g. may prefer to admit requests for files already in cache

0 Work Perfomed by:
= Ekow Otoo, Doron Rotem, Arie Shoshani (LBNL)
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Some Simulation Results fifiiie)

T
e LCB-K isthewinner oL_ower valuesrepresent better policies
Average Retrieval Time Per Reference of Synthetic Workload
.MIT'K,LRU and RND 6‘0 T T T T T T T
comparable - \‘\\
o
@ 55 .
=
 LFU pretty bad < | LCBK (K = 2)
g ol E\\ MITK (K = 2) —%— |
= LRU (K =1} —=—
- 3 LFU —»—
Replacement Policies: S 45| |
*RND: Random .
L FU: Least Frequently Used S 0l |
L RU: Least Recently Used ;
‘MIT-K: Maximum Inter-
Arrival Time based 35 ' ' ! ! ' ' |
on last K references 0 01 02 03 04 05 06 07 08
oL CB-K: L east Cost Beneficial Cache Size as % of Tolal Dala Size
based on last K
references
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Admission Policy Simulation it SDM

(d) Admission Policy with LRU for Synthetic Workload

250000 —+—— e
\ Based on Selection Criterion ——
' Based On Arrival Time -—»—

. 200000 | ]
-4 \
3 '.
= }
@ i
£ 150000 - % |
a |
@ |
o \
& 100000 | 178 2TB |
o %
E \
a

50000 |- & i

“x...__‘
‘“"‘h
.
0 ] | - = 1 . 1 - | - | 25 | i

0 05 A1 15§ 2 25 3 35 4 45 5
Cache Size as % of Tolal Data Size Requested

SciDAC Pl meeting, March 2003 40



A Multi-agent System for Analyzing
Massive Scientific Data

JO" e
[ 3 .

T1 —> : v L r
gi QED{ _%J/ji_%_/ {

1Y
U

133 MB data Per step 8S 8 Agents per step 4 JPGs per step 120 Frame MPEG
: L v |
™ Sy B
- =T AU
Data —= B iMowe

Producer EEmrmr—r=—=c

Control 1 7 Eaagent S
Agent 4% ¥, 3 ¥ h‘h

T3 : I Qﬁ_ |Jv’ {'
Data _{J/ _{_/
Agents .

T120 f,}'
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Results:

A8 0] x|
g 3 —

Phayer T

Phager 15

I:'Ia]ln r i

Player 5

S

Dlayr O

|

Player 13

Playrar 12

Comrols
IT AL i»

Work performed by:

(

Astrophysics data from 194
files

800 agents, each deployed
to create an operational
picture for 100 time steps

Running on three machines

Agents automatically
created every time a new
simulation output file is
created

Thomas Potok, Joel Reed, Tony Mezzacappa, John Blondin, Rick Sheldon
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Controlling the movie i SDM

DETNTETETE

Haexy
TR 25T P
£ PaeSion: 11
Tem« 10801108
Qualiy. 25

i@!"ﬁﬂﬂv“ﬁﬂ

o Agent Mowie Playback - 0] x|
11/20/02 10:15 AM Z Fosivion: 120 Time: 1090-118%9 Qualircy: 100
11839 9330638 11789 18360454 7 4

ww =

Controls

b4l E =
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Work with individual application B
sclentists TR

d Close collaboration with individuals

Matt Coleman - LLNL (Biology)

Tony Mezzacappa — ORNL (Astrophysics)

Ben Santer — LLNL

John Drake - ORNL (Climate)

Doug Olson - LBNL, Wei-Ming Zhang — Kent (HENP)

Wendy Koegler, Jacqueline Chen — Sandia L.
(Combustion)

Mike Papka - ANL (Astrophysics Vis)
Mike Zingale — U of Chicago (Astrophysics)
John Michalakes — NCAR (Climate)
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Re-apply techniques to new
applications

0 Parallel NetCDF
= Astrophysics - Climate

0 Adaptive data reduction
= Astrophysics - Climate

O Compressed bitmaps
= HENP - Combustion

0 Robust File Replication
= HENP - Climate

a Signal Separation
= Climate = Fusion
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Summary i SDM

2 Our guiding principles served us well

2 We are focused, result oriented

2 Technology migration to new applications
2 Clear future path, lots to do

2 Our focus: getting technology into the hands
of scientists
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